Philadelphia University Faculty of Science Department of Basic Sciences and Mathematics Real Analysis 2 First Exam

Student name:		Number:
Remember that:	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$	

1) If
$$f(x) = \sin x$$
, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, show that $(f^{-1})'(y) = \frac{1}{\sqrt{1-y^2}}$ for $y \in [-1,1]$.

2)

- a) State Mean Value theorem
- b) Use Mean Value theorem to prove that $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$.
- 3) Suppose that $f:[0,2] \rightarrow \mathbb{R}$ is continuous on [0,2] and differentiable on(0,2), and that f(0) = 0, f(1) = 1, f(2) = 1.
- (a) Show that there exists $c_1 \in (0,1)$ such that $f'(c_1) = 1$
- (b) Show that there exists $c_2 \in (0,2)$ such that $f'(c_2) = \frac{1}{3}$
- 4) Let $f: I \to \mathbb{R}$ be differentiable on the interval *I*. Show that if f' is positive on *I*, then *f* is strictly increasing on *I*.
- 5) Evaluate

$$\lim_{x \to 0} \frac{x^2 - (\sin x)^2}{x^4}$$

- 6) Let $f: I \to \mathbb{R}$ be bounded. If P_1, P_2 are any two partitions of I, prove that $L(f, P_1) \leq U(f, P_2)$.
- 7) Let $f(x) = x^2$ for $x \in [0,2]$. For the partition $P_n = (0, \frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}, 1)$
 - a) Calculate $L(f, P_n)$ and $U(f, P_n)$.
 - b) Is f Riemann integrable? If yes find $\int_0^1 f$